![]()
|
Abstract The content, user-interface design, interactive self-testing section, and feedback features of these units are described. Additionally, an evaluation of user response to the units is provided. Key features of the unit include a comprehensive collection of digital photos of anatomical features and processes combined with Flash animations and QuickTime movies to illustrate central concepts. |
|
![]() |
|
|
![]() |
Each module guides students through a series of concepts and topics presented in a self-paced manner, with a high visual content supported with concise clarifying text. The visual content is presented using still and animated graphics. These modules are presented as a supplemental resource to assist instructors and students in existing introductory Anatomy and Physiology courses. Each module is designed to complement existing courses and does not represent a stand-alone instructional unit. Students would normally be expected to combine information presented in each module with information obtained from the classroom and laboratory. These modules are most likely to be used as complements to existing courses and can be used in lecture and / or laboratory settings to present and review selected topics. Placing the modules on the Web allows students to access the modules from school or home and review topics as needed. Also, by placing the modules on the Web, instructors from other institutions may freely use the material, instead of developing similar modules independently. |
![]() |
![]() |
2. Technical Overview The navigation scheme is based on Hypertext Markup Language (HTML) using Cascading Style Sheet (CSS). Using CSS displays font characteristics uniformly throughout all module pages without having to insert elaborate font commands for every link. Students access and view links by using a "Mouse Rollover" feature based on JavaScript. The script allows the mouse pointer to change colour when moving over a link in the navigation bar, indicating that the link is selected and active. |
![]() |
![]() |
2.2 Still
Graphics Many of the graphics are pictures taken with a Sony Digimatic digital camera. The anatomical models used for the pictures, such as skeletons and the muscle model, were present in the Douglas College Biology lab. Digital pictures were modified, enhanced, and labeled using Adobe Photoshop 5 software. |
![]() |
![]() |
3. Learning Objectives Potential sets of learning objectives for each module are listed below. Each learning objective is developed in a series of pages that allow a student to work from a general overview of the topic to a presentation of details associated with that particular topic. A set of learning objectives was not placed within the module to allow different instructors to work with the learning objectives they have developed for their courses. This approach provides flexibility for instructors wishing to selectively use and adapt portions of the modules in their courses. After working through the Ossification - An Introduction to Bone Formation, Growth and Repair module, students should be able to perform the following:
After working through the Muscles - An Introduction to Muscles and Muscle Contraction module, students should be able to perform the following:
|
![]() |
![]() |
4. Topic Reviews The technical content of each module can be reviewed by students at the end of each module or as a review exercise prior to a classroom exam. Each module possesses a quiz consisting of thirty multiple choice questions related to central topics in the module (http://www.douglas.bc.ca/ossification/files/quiz.html). The interactive quiz provides immediate feedback to students by indicating whether the selected answer was correct or not. Most quiz questions are linked to specific pages so students can return to review topics earlier in the module by clicking a "review" button. Once they have reviewed a module topic, they may click on a button to return to the quiz. |
|
![]() |
5. Users These modules were designed for students enrolled in any basic Anatomy and Physiology course. At Douglas College, students in General and Psychiatric Nursing or Sport Sciences programs are the primary users of the modules. Senior students and graduates from programs can also access the modules to review basic topics in Ossification and Muscle Contraction as needed. Our experience at Douglas College indicates that students in other programs and university-transfer first year Biology courses also use and appreciate the modules. |
|
![]() |
6. User Feedback Each module is equipped with an optional feedback page that allows a user to evaluate and critically review the module (http://www.douglas.bc.ca/ossification/files/feedback.html). This feature allows us to receive a continuous stream of comments and questions from users. While the feedback is voluntary, anecdotal, and accumulating, we have received 20 feedback forms. All of the feedback has been extremely positive in terms of module assessment and use. No negative assessments or comments have been received on any of the modules. Some users have identified themselves as Douglas College students; we have also received feedback from external users who have worked with, and appreciated, the modules. The module review form consists of four specific questions plus a "comments" section in which a reviewer may enter detailed or lengthy responses. The response to each question is rated on a five-point scale from 1 (strongly agree) to 5 (strongly disagree) with 3 indicating a neutral response. The questions asked are listed below, with the average response score indicated in parentheses after each question. The response scores were derived from a set of eleven complete evaluation forms which provided answers to all of the questions asked. The remaining nine forms were either incomplete or contained comments only.
While a small sample of review forms exists, the positive responses to the modules are clear. Users voluntarily reported that they learned from the modules, found the site easy to navigate, and appreciated the composition of the content, the interactive nature of the quiz, and the review feature. User comments were universally positive in nature. Users identified as students provided anectodal comments that support the idea that the modules do help some students learn complex topics. Representative student comments include:
One comment was received from an instructor at another institution.
User feedback is solicited and received on an ongoing basis as the feedback form is built into each module. |
|
![]() |
7. Discussion A series of surveys of over 2000 North American educators on the use of Web-based materials in teaching indicates that the majority of respondents consider Web-based teaching tools to be as important as traditional teaching aids (McGraw-Hill Ryerson, 2002). The report also indicates that student success is enhanced by Web-based learning activities; students perceive Web-based materials to be more effective learning aids than traditional resources, such as the library and tutoring. The survey results also indicate that an ever-increasing number of faculty are integrating Web-based content into course delivery. The trend seems to be for faculty to integrate computer-based modules into existing teaching practices, rather than transforming entire traditional courses to Web-based courses. We would agree that a careful selection of Web-based content modules can complement instruction in specific classroom and lab activities. The development of specific modules to address learning bottlenecks has proven to be more cost effective than developing entire courses at our institution. Sufficient funds and time are currently not available to transfer a set of Anatomy and Physiology courses to a computer-assisted mode of delivery. However, by carefully using the available resources to address specific, common conceptual problems reported by students, some computer-based modules can be developed to produce a widespread, long-lasting aid to student learning. The use of specific modules to complement other teaching efforts has been used successfully in a variety of educational contexts. For example, instructional modules designed to teach anatomical concepts in a clinical setting combined with Problem-Based Learning activities have proven successful (Kennedy et al., 2001; Keppel et al., 2001). Similarly, prior training with computer modules improved student performance on anatomical dissections in laboratory activities (Gunn and Maxwell, 1996). The initial learning curve to develop these modules was steep and did require a considerable investment in time and energy. However, we now feel that each module represents a re-usable template that can be edited to quickly develop presentations of new topics. Additional modules are likely to be produced in a shorter period of time, and be less expensive, as the development team gains experience in managing the software used to produce modules. We recognize that there is a need for a methodology to assess the effectiveness of multimedia units as learning aids. We quite deliberately responded to comments from students to develop these units in an attempt to deal with a recurring complaint about the presentation of difficult topics. Once the modules were used, we received anecdotal feedback from students and external users indicating that the modules were useful in helping people learn more about selected topics. We have made no attempt to quantify learning by the users, but we have assumed that positive feedback from users indicates that some learning process was enhanced when people used the modules. |
|
![]() |
8. Conclusions Anatomy and Physiology topics can be complex, and often require students to visualize unfamiliar dynamic processes while assimilating a significant amount of new technical vocabulary. The use of Web-based instructional units provides clear visual images and concise text to assist students in learning new material. Students can work through Web-based modules at their own speed and receive assistance on topics that represent temporary learning roadblocks. |
|
![]() |
9. References
Keppell, M., G. Kennedy, K. Elliot & Harris, P. (2001). Transforming Traditional Curricula: Enhancing Medical Education through Problem-Based Learning, Multimedia and Web-Based Resources. IMEj 3 (1). Technology and Student Success. 3rd Edition. (2002). McGraw-Hill Ryerson. 171 pp. |
![]() |
![]() |
|
![]() |