
PRIMER

Chapter 4: Fundamentals of Digital Audio1

4.1. Sound Waves
 In their very first introductions to physical science, students are taught that “sound
is a wave.” But what does this really mean, and what repercussions does this have in the
way sound is represented in a computer? If you understand how sound is produced and
transmitted, it will be easier for you to understand how it is digitally represented and
manipulated, so let’s take a closer look.

Figure 4.1. Pure Audio Tone No Overtones, Represented as a Wave Form

 If you try to picture sound as a wave, you might picture a “bump” of air
molecules moving across space. You might imagine the molecules moving up and down
they as the sound wave makes its way to your ear. It makes a charming picture, but in
fact, this isn’t what a sound wave is at all.
 Let’s start at the beginning. First, sound is a mechanical wave, which means that
it results from the motion of particles through a transmission medium – for example, in
the case of sound, the motion of molecules in air. Because sound is a mechanical wave, it
has to have something to move through; sound cannot be transmitted through a vacuum.

Figure 4.2. Changing Air Pressure Caused by Vibration of Air Molecules

The movement associated with a sound wave is initiated by a vibration. Imagine

one of the strings inside a piano vibrating after one of the piano’s soft hammers hits it.
The air molecules next to the string are set in motion, radiating energy out from the
vibrating string. For simplicity, let’s just picture a single “wave” moving from left to
right. As the string vibrates to the right, the molecules closest to the string are pushed to
the right, bumping into the molecules next to them, which in a chain reaction bump into

1 This material is based on work supported by the National Science Foundation under Grant No. DUE-
0127280. This chapter was written by Dr. Jennifer Burg (burg@wfu.edu).

1

the molecules next to them, and so forth. When a group of molecules are pressed closer
to their neighbors, air pressure rises. When the string moves back to the left, the
molecules next to the string have space to spread out and move to the left as well, so the
pressure between these molecules and the molecules to their right is reduced. This
periodic changing of air pressure – high to low, high to low, etc. – radiates out from the
string from left to right. (See Figure 4.2.)

So you see, a sound wave is, physically, not a bump of air moving across space.
If you can visualize a sound wave as we just described it above, you can see that the
motion of the air molecules is back and forth from left to right, the same direction in
which the wave is radiating out from the string. A wave of this type is called a
longitudinal wave, which is defined as a wave in which the motion of individual particles
is in a direction parallel to the direction in which energy is being transported. Sound is a
longitudinal mechanical wave.

Then why do we draw sound waves as we do, like the one in Figure 4.1?
The sound wave in the figure is a graphical and mathematical abstraction of the physical
phenomenon of sound. It represents the periodic change of air pressure. First the
pressure increases as molecules are pushed closer together, shown by the upward bump in
the graph. Then the pressure decreases as the molecules move apart, shown by the
downward bump. These changes happen over time, so the x-axis in the graph represents
time, while the y-axis represents air pressure.
 A little terminology will make it easier for us to talk about sound waves in their
graphical representation. A wave is said to be periodic if it repeats a pattern over time.
The pattern that is repeated constitutes one cycle of the wave. A wavelength is the length
(in distance) of one complete cycle. The frequency of a wave is the number of times a
cycle repeats per unit time (which in the case of sound corresponds to the rate at which
the air molecules are vibrating). Frequency is measured in cycles per second, or herz
(abbreviated Hz). One cycle per second is one herz. One thousands cycles per second
make 1000 herz, or one kilohertz (KHz). One million cycles per second is equal to 1000
KHz, which is one megahertz (MHz). The period of a wave is the amount of time it takes
for one cycle to complete. Period and frequency are reciprocals of each other. That is,

frequencyperiod /1=
periodfrequency /1=

The height of a wave is called its amplitude.
 A graphical representation of sound in the form of a wave tells us something
about the sound without our having to hear it. If the wave is completely regular like the
one in Figure 4.1, then the sound is a pure tone, like a single musical note with no
overtones. The amplitude of a wave corresponds to how loud the sound is; the larger
the amplitude, the louder the sound. The frequency of a wave corresponds to the pitch of
the sound; the higher the frequency, the higher-pitched the sound.

When sound is recorded, the changes in air pressure are translated to changes in
voltage. A microphone picks up the changes in air pressure and records them as changes
in voltage on an electrical wire. In the days of analog audio – 8-track tapes and vinyl
record albums, for example – these voltage changes were captured in the form of changes
in magnetic strength on the tape or changes in the depth of a groove on the vinyl record.
A tape or record player then could play back the sound by reading the amplitude values

2

imprinted on the tape or record, translating them again to voltages, and sending them to a
speaker to be converted back to air vibrations.

When changes of air pressure reach the human ear in this wave-like pattern, they
are detected by tiny hairs in the inner ear, translated into nerve impulses, sent to the brain,
and in a miraculous process that is part of the human sensory system, interpreted as sound.

4.2. Adding and Decomposing Sound Waves
 Figure 4.1 shows a simple wave form corresponding to a pure musical tone with
no overtones. If you remember your high school trigonometry, you may have noticed
that the shape of this wave is the same as the graph of a sine function. Few sounds in
nature are this pure in form. For example, Figure 4.3 shows part of the wave produced
by the spoken word “Hi!” It is not as regular as the pure tone of Figure 4.1, but it can be
shown that it is, in fact, the sum of waves with a completely regular shape like the one in
4.1. (See Section 4.3 of the CS Chapter 4.)

Figure 4.3. Part of the Spoken Word “Hi” Represented as a Wave Form

We can illustrate this with a simple example. Let’s use musical tones that sound

good together. Figures 4.4 a, b, and c shows the wave forms for three pure tones, the
notes middle C, E, and G on the piano. Figure 4.4 d shows the wave form for notes C
and E played simultaneously. Figure 4.4 e shows C, E, and G played simultaneously.

The importance of this fact is that, once we have represented a sound wave
digitally, sound processing programs make it possible to analyze the wave form, filter out
unwanted frequencies, and edit the sound for better quality or creative effects. Just as
simple waves can be “added up,” as shown below, a complex wave can be decomposed
into its simple component parts. In fact, it can be proven that any periodic wave form, no
matter how irregular it may appear, can be decomposed into a sum of pure sine and
cosine waves. One of the mathematical methods to accomplish this decomposition is
called the Fourier transform. In a digital sound processing program, you’ll encounter the
Fourier transform as the basis for filters that break down a sound and pull out unwanted
frequencies, such as low-pitched noise. Understanding how wave forms are added and
decomposed will help you understand the tools available to you in audio processing.

One last note about sound waves before we move on to digitization: You may
have noticed that in our graphs of sound waves, we haven’t included any units along the
x- and y-axes. Time runs along the x-axis, and the units can sometimes be inferred from
the example. In Figure 4.5a, for examples, which shows a tone that has a frequency of
400 Hz, ten complete cycles would cover 10/400th of a second. Generally, however, you
don’t need to consider either the time or the amplitude units in order to understand the
example being presented. On the y-axis, representing amplitude, the unit of measurement
could be decibels, a common measurement for the loudness of sound. It could also be
voltage, since changes in voltage can be used by electronic devices to communicate
changes in air pressure and thus the amplitude of sound. In these examples, the unit of

3

measurement is not important; instead, we are focusing on the relative sizes of values on
the y-axis and the precision with which they can be measured. (See Section 4.2 of CS
Chapter 4 for a more precise definition of amplitude measured in decibels.)

Figure 4.4a. The Musical Note C

Figure 4.4b. The Musical Note E

Figure 4.4c. The Musical Note G

Figure 4.4d. The Notes C and E Played Together

Figure 4.4e. The Notes C, E, and G Played Together

4

4.3. Digitizing Sound

We have seen that a wave form is a convenient way to describe sound, but it is an
analog representation, not a digital one. A continuous, curved line like the wave in
Figure 4.1 is in analog form in that, going horizontally along the x-axis, the line spans an
infinite number of points in time. For any two points we might select on the graph, there
is always another point in between. To reduce this infinite number of points to a finite
number that a computer can handle, we must choose a number of equally-spaced points
in time at which to sample the amplitude of the wave. Then each sample has to be
quantized – that is, it must be represented in a fixed number of bits. Just like digitizing
analog image data, digitizing analog audio data requires the two steps of sampling and
quantization. In the domain of digital audio, this encoding process is often referred to as
pulse-code-modulation (PCM).

The device that accomplishes the digitization process is called an analog-to-
digital converter (ADC). Most up-to-date computers are equipped with sound cards that
have an ADC to create digital audio. The microphone in the computer captures the sound
and communicates it to the sound card, the sound card does the analog to digital
conversion, and the data is stored in memory and/or on the hard disk. Let’s look more
closely at this digitization process, and consider the implications of converting from
analog to digital form.

4.3.1. Sampling
 In order to take samples of a sound wave, we need to choose a sampling rate. The
choice of sampling rate will have an effect on how closely the digitized audio file
matches the original sound wave. Like frequency, sampling rate is measured in Hz. A
sampling rate of 44,100 samples per second is referred to as a sampling rate of 44,100 Hz,
or 44.1 KHz. The question we want to explore is this: If you want to digitize a sound
wave that has frequency of n Hz, what sampling rate is appropriate? The answer is that
the sampling rate must be more than Hz, as we’ll demonstrate below. n*2

Figure 4.5a shows an analog sound wave with a frequency of 400 Hz. What
happens if we try to digitize this wave by sampling it at a rate of 400 Hz – i.e., 400
samples per second? This would mean that we take just one sample for each cycle of the
wave, at regularly-spaced intervals. Figure 4.5b shows the result. If we try to recreate
the wave by joining the sample points, the wave we get is just a flat line.

In Figure 4.5c we try again, this time using a sampling rate of 600 Hz – i.e., 600
samples per second. That’s two samples for every three cycles. Again, we aren’t able to
approximate the wave with so few samples. Even if we “round out” the wave that we get
by joining the sample points, it isn’t much like the original wave.

What happens if we try sampling a 400 Hz wave at 800 Hz? When we sample at
exactly twice the frequency of the wave, we can reconstruct the original wave accurately
if the samples are taken at the minimum and maximum amplitudes of the wave. But if
we sample anywhere else, as in Figure 4.5d, we get back a wave with the right frequency
but a lower amplitude. If we take the samples each time the wave crosses the x-axis, it’s
even worse – a flat wave of amplitude 0.

5

Sampling a 400 Hz wave at 1200 Hz, as in Figure 4.5e, definitely gives us enough
information to reconstruct the wave – three samples every cycle. We have the correct
amplitude and frequency, and we only need to round the wave out to get back the original.

Figure 4.5a. A 400 Hz Wave Sampled at 44.1 MHz

Figure 4.5b. A 400 Hz Wave Sampled at 400 Hz Becomes a Flat Wave

Figure 4.5c. A 400 Hz Wave Sampled at 600 Hz

Figure 4.5d. A 400 Hz Wave Sampled at 800 Hz

Figure 4.5e. A 400 Hz Wave Sampled at 1200 Hz

 A Swedish scientist by the name of Nyquist was the first to observe formally what
we’ve demonstrated here: To represent an analog periodic wave in digital form with the
assurance that you can recreate it faithfully, you need to sample it more than twice in
each cycle. To say this another way, the sampling rate must greater than twice the
frequency of the wave, which is called the Nyquist rate. If the wave is of a complex form
like the one shown in Figure 4.3, then the sampling rate must be greater than the
frequency of the highest-frequency component. Sampling at a rate that is anything less

6

than the Nyquist rate results in sound aliasing – that is, a frequency which “masquerades”
as another because it is converted to digital form with a sampling rate that is not the same
as the original.

We have looked at this in the case of a pure wave, but we can generalize the
statement to more complex wave forms, which are sums of pure periodic waves. By the
Nyquist theorem, if the highest frequency component of the sound being digitized is n Hz,
then the sampling rate must be greater than Hz. The practical application of this is
that when you record sound, you need to choose a sampling rate that is greater than twice
the highest frequency that will be heard in the sound being recorded. For speech, 8000
samples per second generally suffices; for CD quality audio, 44,100 samples per second
is the standard. If the sampling rate is too low, either you will have to put up with the
“noise” inserted by aliased sound wave components, unless your sound editing software
filters out the too-high frequency components before sampling.

n*2

4.3.2. Quantization
 Quantization is the second step in analog-to-digital conversion. Once a sound
wave has been sampled, each sample must be represented in a fixed number of bits. How
do we know the proper number of bits to be used in each sample?

As explained in Primer Chapter One, the numbers that can be represented by n
bits range in magnitude from 0 to 12 −n , giving us different values. For example, with
three bits we can represent values; with eight bits we can represent
values; and with 16 bits we can represent values.

n2
823 = 25628 =

536,65216 =
 Each sample of a sound wave has to be encoded in a fixed number of bits. The
number of bits used in each sample is called the sound file’s bit depth. (The term
resolution is used synonymously.) Let’s say we tell our sound processing program that
we want to use 3-bit sound samples. (This isn’t a realistic example. The lowest bit-depth
that is generally used for audio is eight bits per sample, but we want to keep our drawings
simple.) A bit-depth of three bits would mean that the program would be able to
represent only eight different amplitude levels. That’s like slicing the y-axis of a wave
graph into eight equal segments, as shown in Figure 4.6. Each horizontal line in the
figure represents one of the eight values that can be used to quantize the samples. For
each sample, the amplitude value has to be rounded to the closest of these lines. This is
shown for a number of discrete sample points in the graph. The dark blue squares are the
sample points. The red square above or below each sample point is the value to which
the point would be rounded when it is quantized.

7

Figure 4.6. Quantization Error

 You can see that quantization results in a loss of precision. Even if we smooth
out the wave, we don’t get back exactly the shape of the analog wave that captured the
original sound. This loss of fidelity to the original that results from quantization error is
called distortion.

The amount of distortion (also called quantization noise) can be pictured as
another new component inserted into the original waveform. In Figure 4.7, the original
waveform is shown in shadow, the quantized wave is in red, and the quantization error
introduced is shown in green. Note that the original wave minus the error wave is equal
to the quantized wave. This means that the quantization error introduces a low amplitude
noise as another component added to the original waveform, which comes out sounding
like a low amplitude hiss. The lower the amplitude of the original audio, the more
distracting the noise because the amount of noise is large relative to the true sound.

Figure 4.7. Original sound wave (in shadow),

quantized wave (in red), and error wave (in green)

The point here is that the bit depth used for a sound file – the number of bits used
for each sample – must be large enough for the audio quality desired. Some applications
require more fidelity to the original sound source than others. For example, a digital
recording of a symphony orchestra ought to sound as much like the live performance as
possible, so a large bit depth is used – say 16 bits in each of two stereo channels. For
telephone transmissions, on the other hand, it is important only that the voice be
recognizable and understandable, so eight bits in a single channel is sufficient.

If a low bit depth is necessary but it introduces an unacceptable amount of
distortion, a sound editing program can dither the sound file. Dithering is a process that
removes some of the distortion caused by low bit depth by adding random noise to the
audio file. The result is that instead of a distorted sound (like clicks or breaks), the audio
file may have a little background hiss, but this noise is often preferable to distortion and
closer to the original sound than without dithering. If you have to save an audio file at a
lower bit depth than the original version, you should try the dithering option to see if the
resulting quality is better.

4.3.3. Common Sampling Rates and Bit Depths
 So why do you need to know about sampling rate and bit depth? First of all, any
time you create a digital sound file, you’ll be asked to choose a sampling rate and bit

8

depth, and you’ll have to select between stereo and mono. How do you know what to
select?
 The Nyquist theorem tells us that the sampling rate must be more than twice the
frequency of the highest frequency component in the sound we want to digitize. The
highest frequency that humans are capable of hearing is 20,000 Hz (i.e., 20 KHz).
(That’s a high upper limit. Most of us can’t hear frequencies that high, and our ability to
detect high frequency sounds diminishes as we age.) The standard sampling rate for
audio CDs is 44.1 KHz. This is more than twice the frequency of the highest pitched
tone humans are able to hear, so that’s good enough. CD-quality digital audio uses 16 bit
samples, and it is produced in stereo – two channels, that is. So CD-quality digital audio
consists of two 16-bit samples taken 44,100 times for every second of sound. If you want
to record music that is of CD-quality, you should choose a sampling rate of 44,100 KHz
and a resolution of 16 bits in stereo.
 If you’re only recording the human voice (speaking), then you may not need the
high fidelity of CD-quality sound. The highest frequency reached by the human voice is
about 5 KHz, so a sampling rate of 10 KHz would be sufficient. A resolution of eight
bits per sample and a sampling rate of 8 KHz may be enough (telephone quality digital
audio) if you don’t care about exact fidelity to the tones of the voice.
 Table 4.2 lists common formats in terms of sampling rate, bit depth, and file size
for 1 minute of digital audio.

4.4. Amplitude and Dynamic Range

The amplitude of a sound wave is an indication of the loudness of the sound, but
the relationship between the two is not linear. In other words, one sound may have n
times the amplitude of another, but this does not mean that it is perceived as n times
louder to the human ear. For example, a voice at normal conversation level could be 100
times the air pressure amplitude of a soft whisper, but to human perception it seems only
about 16 times louder. If we used units related to the changes in air pressure to measure
sound, the differences in numbers wouldn’t match the differences in the way we perceive
sounds. Decibels are scaled to account for the non-linear nature of human sound
perception. Table 4.1 gives the decibels of some common sounds (abbreviated dB).

Sound Decibels (dB)
Threshold of hearing 0
Rustling leaves 20
Conversation 60
Jack hammer 100 (or more!)
Threshold of pain 140
Damage to eardrum 160

Table 4.1. Magnitude of common sounds measured in decibels

9

Amplitude in decibels

Amplitude in sample values

Figure 4.8. Amplitude measured in decibels an samples values.

Decibels are an appropriate unit for describing the range of sound amplitudes, or
dynamic range, of a digital audio file. In practice, the term dynamic range is used in two
different contexts. A piece of music or an audio clip that ranges between very loud and
very soft passages – for example, most classical symphonic music – is said to have a
wide dynamic range. It is also possible to speak of the dynamic range achievable in an
audio file based on the number of bits per sample in that file. If you open a new file to be
recorded in a digital audio editing program and specify that you want 8 bits per sample,
you are limiting the dynamic range of your digital recording to the dynamic range that 8
bits afford. The greater the bit depth, the greater the dynamic range. The importance of a
greater dynamic range is that lower amplitude (softer) sounds are more affected by
quantization noise when the dynamic range is small. That is, the lower the bit depth, the
more the quiet parts of an audio file are distorted by quantization noise.

Often, audio editing programs allow you to change the view to show amplitude in
sample values, percentages, or normalized values between 0 and 1. Figure 4.8 shows a
16-bit wave form in the decibel and sample-value views.

10

To summarize, the dynamic range of a digital audio file is limited by the bit depth,
greater bit depth offering greater dynamic range. However, a particular piece of music
may not use the full dynamic range offered by the bit depth in which it is captured. Some
pieces of music use a wider dynamic range than others.

Dynamic range also comes into play in limiting the loudness of sounds that can be
digitally recorded. An amplitude that exceeds a digital audio file’s dynamic range will be
clipped to the maximum level. Clipping causes extreme distortion of the audio signal, as
evident in Figure 4.9 in the way the sound waves are “cut off” straight across the top.
Digital audio editing programs have a level meter that shows the amplitude level and
indicates when the amplitude is exceeding the dynamic range. Some also allow you to
dynamically adjust the maximum amplitude level to avoid clipping.

Figure 4.9. Clipped audio, zoomed out and close up

4.5. Digital Audio Files
4.5.1. File Sizes
 Section 4.3 discussed the implications of your choice of sampling rate and bit
depth, short-changing either one diminishes the fidelity of digital audio. If higher
sampling rate and bit depth always give better quality sound, why not always choose the
maximum possible? The problem is that you pay a price in the size of your digital audio
files. Consider the size of a 60 minute CD that is recorded in stereo with a sampling rate
of 44.1 KHz and a bit depth of 16 bits per sample. How large would this file be?
 60 minutes * 60 seconds/minute = 3,600 seconds
 3,600 seconds * 44,100 samples/second = 158,760,000 samples
 one 16-bit value for each of the two stereo channels = 32 bits/sample
 32 bits/sample * 1 byte/8 bits = 4 bytes/sample
 158,760,000 samples * 4 bytes/sample = 635,040,000 bytes ≈ 630 MB
This is a large file. You’d fill up your hard disk drive pretty quickly with files of this size.
You also have to consider file size if you’re going to post your audio files on the web.
The larger the file, the more time it takes to be downloaded to another person’s computer.
If memory space is limited or if you’re creating audio files to be shared with others, you
have to weigh the importance of audio quality against the size of the file.

11

Format Sampling Rate Bit Depth Uncompressed File

Size in Bytes for One
Minute of Audio

Download
Time on
56Kb/s
modem*

Download
Time on
1.5Mb/s
cable
modem

speech
(telephone)

8000 KHz 8 bits 480,000 1 minute 8
seconds

2.56 sec

CD stereo 44.1 KHz 16 bits per
channel

5,292,000 (multiply by
n for n-channel stereo)

> 25 minutes
(assuming 2-
channels)

> 9 min

DAT
(digital
audio tape)

48 KHz 16 bits per
channel

5,760,000 (multiply by
n for n-channel stereo)

> 27 minutes
(assuming 2-
channels)

> 10 min

DVD 96 KHz 24 bits per
channel

17,280,000 (multiply
by n for n-channel
stereo)

> 82 minutes
(assuming 2-
channels)

> 30 min

*The values for 56K modem are underestimate, since in reality you don’t get a full 56Kb/s.
Table 4.2. Common sampling rates and bit depths for audio files

WORKSHEET
Link to Worksheet on Digital Audio File Size and Date Transfer Time

It is possible to retain audio quality to a great extent and still make your files

smaller. This is done through audio compression. Compression techniques squeeze the
data in an audio file into more concise formats so that important information is not lost.
Many of the sound file types you are probably already familiar with use audio
compression. When you work with a digital sound processing programming, you can
choose the format that you want to save your audio file in. Common choices are listed in
Table 4.3. Some of these choices automatically imply that the file will be compressed.
Others allow you to indicate whether you want to compress the file, and possibly how
much.

Your choice of file format should be determined by the type of sound you have
recorded, your limits on file size, and who you expect will use the file. Some file formats
work only on certain types of computers or operating systems. The differences are
summarized in Table 4.3.

12

File Type Acronym

For
Originally
Created By

Type of
Compression

Platforms

.aiff

Audio
Interchange
File Format

Apple, adopted
later by Silicon
Graphics

usually not
compressed, but
has a compressed
version

Apple Macintosh
and Silicon
Graphics computers,
and now also on
Windows

.wav

 IBM and
Microsoft

supports a
number of
different
compression
formats

primarily for
Windows, but can
be run on in other
systems

.au
and .snd

Also called
mu-law or
Sun mu-law
format

Sun and NeXT mu-law encoding
compresses the
file at a ratio of
2:1; slow
decompression

Sun, NeXT, Unix or
Linux operating
system

.ra or .rm

Real Audio Real very high degree
of compression;
files can be
streamed; sound
quality poorer
than .mp3

cross-platform

.mp3 MPEG audio
layer 3

Moving
Pictures
Experts Group

good
compression rate
with high quality
sound

cross-platform

.swa

Shockwave Macromedia uses same
compression as
mp3

cross- platform

.asf advanced
streaming
format

Windows proprietary
compression
algorithm

Primarily used with
Windows Media
Player

Table 4.3. Common Digital Audio File Formats

4.6. Audio Transforms and Filters
It is often convenient to change the representation of data in order to be able to

separate out what is important and what is not important, or what you want to change and
what you do not want to change. This is the case with digital audio data, where
transforming the digital data from the time domain to the frequency domain makes it
possible to handle different frequencies differently for the purposes of filtering and
compression. Representing audio data in the digital domain entails recording amplitude
values (the range) at discrete moments in time (the domain) as in Figure 4.10.

In the frequency domain, on the other hand, frequency values run along the x axis
while amplitudes remain on the y axis. Accordingly, Figure 4.11 displays the amplitude
of frequency component exists in a given audio clip. This clip has dominant frequency
components of about 250 Hz, 2000 Hz, and 4800 Hz.

13

 Spectral analysis provides another time-based way of viewing frequency
information. In the spectral view, time is on the x-axis and frequency is on the y-axis.
The amplitude of a each frequency at a moment in time is given by the color of that band
across as you move horizontally. Bright colors correspond to higher amplitudes. In
Figure 4.12, the highest amplitude frequencies are, as before, at approximately 250 Hz,
2000 Hz, and 4800 Hz. The amplitude remains constant through the interval shown.

Filters in audio editing programs use transforms (e.g., the Fast Fourier Transform,
or FFT) to decompose a sound file into its frequency components, allowing the user to
filter out frequencies in certain bands. An equalizer allows you to boost or reduce the
amplitude in frequency bands. A graphic equalizer displays a graphical view of slider
bars, each corresponding to a band of frequencies. You can move the sliders up and
down depending on whether you want to make the frequency louder or softer.
Specialized filters are also available in audio editing programs, including the de-esser,
low pass, and high pass filter. A de-esser removes the hissing s sound that results when a
person speaks or sings too close to a microphone. The low pass filter removes high
frequencies above a given threshold, allowing low frequencies to pass through. The high
pass filter does the opposite.

Figure 4.10. Digital audio in time domain (from the Waveform Edit View of Adobe Audition 1.0)

14

Figure 4.11. Digital audio in frequency domain

(from the Frequency Analysis of Adobe Audition 1.0)

Figure 4.12. Spectral view of sound wave shown in Figure 4.10

(from Spectral View of Adobe Audition 1.0)

15

4.7. MIDI
 So far in this chapter, we have been describing digital audio. You have seen how
digital audio is captured through samples of sound waves. Digital audio files consist of
long sequences of samples, each of which is represented in a fixed number of bits. The
digital-to-audio converter (DAC) attached to your computer’s or stereo system’s speakers
converts these digital samples to voltages that tell the speakers how to vibrate and thus
reproduce the original sound.
 There is another way to store information about music, called the MIDI format.
MIDI stands for musical instrument digital interface. MIDI defines a standard format in
which electronic digital musical instruments can communicate with computers. A MIDI
keyboard is an example of such a musical instrument. It looks like a small piano, but the
difference is that instead of being a mechanical device that creates a sound by the striking
of padded hammers on strings, it is an electronic device that synthesizes sound in digital
form using its own internal microprocessor (i.e., computer).
 MIDI music is recorded in a form completely different from the format of digital
audio. While a piece of data in a digital audio file represents the amplitude of a sound
wave at some point in time, a piece of data in a MIDI file represents the instrument being
played, the note being played, and the duration of the note. As a piece of music is played
into a MIDI instrument, the instrument’s internal computer records the music in the MIDI
format. Then the music can be passed to your desktop or laptop computer by means of a
MIDI cable connection

MIDI files are compact and easy to work with. Once you get your MIDI file onto
your computer, you can work with it in a MIDI music processing program, easily
changing the key, tempo, or instrument being played.

If MIDI files are so compact and easy to work with, you may wonder why we
don’t use the MIDI format for all audio files. The reason is that MIDI works for
simulating or reproducing the sound of musical instruments, but it doesn’t work for
recording real-time audio events. Also, MIDI music is essentially instrumental music.
(It’s true that the human voice can be synthesized, but we’d have to be able to synthesize
every possible word a human could say.) Sometimes we want to record exactly what our
ears hear, and for this we need digital audio recording.

Link to on-line demo on Digital Audio Fundamentals

16

	PRIMER
	Chapter 4: Fundamentals of Digital Audio
	4.1. Sound Waves

