In the last ten years, it has become common to use software design patterns to help design
complex applications. Historically, design patterns are descriptive rather than generative.
Each design pattern describes a family of solutions to a common software problem. A
software architect uses a design pattern to communicate with programmers about an
intended family of solutions to a software component. The programmers use the
documentation associated with the design pattern to write code by adapting the solution
family for the context of the particular application they are writing. A common example
of a design pattern is the observer design pattern. In this pattern, several software objects,
called observers, register themselves with another software object, called the subject.
Every time the subject changes its state in a particular way, it informs the observer
objects that it has changed so that they can perform whatever actions are appropriate. The
observer pattern is used extensively in graphical user interfaces. In addition, it is used to
describe the solution to the problem of updating a document that contains components
from other documents. For example, a chart can observe a spreadsheet subject and update
itself whenever the spreadsheet changes. Recently, descriptive design patterns are being
augmented by generative design patterns, which in addition to describing a family of
solutions to a problem, are also capable of generating code that implements any of the
solutions.

Software design patterns do not model the knowledge domains of the applications they
are designed to serve. Instead, they model the collaboration patterns of software objects
that provide solutions to recurring software problems. For interactive storywriting, we are
not using software design patterns. Instead, we are using patterns that correspond to
common literary themes and idioms. Our patterns do model the knowledge domain of the
discipline that our software is trying to serve (storywriting software). However, our
patterns are generative so that they can generate the appropriate scripts so that the writer
does not have to write them. it is a bit ironic that the idea of software design patterns
arose from the use of design patterns to represent architectural solutions, not software
solutions. We are simply returning to the roots of design patterns by drawing them back
from the software domain to the application domain.



