![]()
|
Abstract |
|
![]() |
1. Introduction However, academic institutions have not yet exploited DAB for educational and training purposes. This paper explores how DAB might be used to deliver learning materials in a tutorial setting and how the addition of different types of visual information to audio information within DAB programmes affect the experience and/or efficiency of tasks (such as in teaching and learning) carried out by an individual. Although many have studied the effect of different media combinations on learning within a traditional computer setting (Alty, 1999; Alty, 2002; Beacham and Alty, 2003; Cobb, 1997; Mayer, 2001; Najjar, 1996; Paivio, 1986; Sweller et al, 1998), our study seeks to determine where value can be gained in teaching and learning situations by adding visual information using DAB We examine how effective a DAB programme can be in an educational setting when different combinations of media are used to present the contents. Our intention is to determine whether the use of visual materials within DAB programmes is worthwhile and, if so, what types of visual material should be considered or rejected. |
![]() |
![]() |
2. The Approach Our methodology is illustrated in Figure 1a. The students were divided into four groups and each group was shown a different version. They were then tested to determine the knowledge gained during the presentation. One hour later, the four groups were given access to the browsable version and asked to browse for about 15 minutes. Then they were tested again for the knowledge gained. Examples of the different versions can be viewed in Figures 1b-1e. All versions ran for the same duration and delivered the same audio track underpinned by the same key messages. The experiment was carried out within a module on Multimedia at Loughborough University. The module formed part of a course on Human Computer Interaction taught within the Department of Computer Science. From a teaching perspective, the experiment aimed to illustrate to students the effects that different media combinations might have on learning performance. All students taking the module were asking if they would like to take part in the study and those who agreed were divided into the four groups, which were carefully balanced for gender, age and knowledge differences. The presentations for each group took place in separate lecture rooms. When all the participants in a group finished they were allowed to leave. |
![]() |
![]() |
|
![]() Figure 1a. Methodology used in study. |
![]() |
|
|
![]() |
|
|
![]() |
|
|
![]() |
|
|
![]() |
|
|
![]() |
3. The Course Materials |
![]() |
![]() |
|
|
![]() |
|
|
![]() |
In the browsable version, all the interaction centred on the timeline. Selecting labelled parts of the timeline redisplayed the visual nonverbal information and displayed, in a text field, what was originally spoken. We also provided a glossary of terms used in the programme and made this available for reference in the browsable version. Further details about the programme have been reported by Duncumb et al (2003). |
|
![]() |
4. Instruments for data capture The post-test contained the same questions about the material in the programme as the pre-test. However, they were phrased in a different way so that they addressed the issue of whether participants had recalled prior knowledge of the materials from the first viewing of the programme or during the browsing exercise. All the questions were based upon the auditory information delivered. The second test was based on the first to allow for comparisons between seeing the programme and browsing the interactive version. |
![]() |
![]() |
5. Experimental Results Figure 4a shows the mean test scores for the pre- and post- tests across each media group. Beside each mean test score for each media group is an additional set of scores that take into consideration prior knowledge. The difference between the mean test scores and those adjusted for prior knowledge in both tests is not significant. This suggests that at the start of the experiment the participants had little or no prior knowledge of the material covered in the Astronomy programme. In the pre-test, the mean scores between the media groups were significantly different (p=0.006). This was also the case between the media groups in the post-test (p=0.022). In test one the group of participants given Audio and Diagrams obtained the highest average score, followed by the group given Audio and all visuals. The group of participants given Audio and Timeline obtained the lowest mean score. |
![]() |
![]() |
|
Figure 4a. Prior knowledge scores. |
![]() |
|
![]() Figure 4b. Improvement in scores. |
![]() |
|
![]() Figure 4c. Presentation interesting. |
![]() |
|
![]() Figure 4d. Browsable version interesting. |
![]() |
|
![]() Figure 4e. Learnt from presentation. |
![]() |
|
![]() Figure 4f. Learnt from browsable version. |
![]() |
All the participants
who completed both tests obtained higher scores in the second test
than the first. Figure 4b shows the difference in the improvement participants
made in the mean scores across each media group. There was no significant
difference in participants' improvement across media groups. Interestingly,
the group who were given Audio Only improved the most between test
one and two. In contrast, the group who were given Audio and Diagrams
improved the least in the post-test. In spite of there being no significant
difference in improvement across the media groups overall, there was
a significant difference between the groups given Audio only and the
group given Audio and Diagrams (p=0.023). Figures 4c-4f show participants' subjective views about how interesting the programme was to follow, and how much they felt they had learned from the programme. Founded on the results of Test One, Figure 4c shows that 64.2% of participants given Audio Only felt that the programme was interesting compared with 84.6% who were given Audio and all visuals, 80% who were given Audio and Timeline, and 91.6% who were given Audio and Diagrams. In this case, the programme containing Audio and Diagrams was found to be more interesting by participants. In terms of the results from the post-test (shown in Figure 4d) all of the participants given Audio only, 61.5% of those who were given Audio and all visual, 80% of those who were given Audio and Timeline, and 83.3% of those who were given Audio and Diagrams felt that the programme was interesting. Clearly the post-test programme containing Audio only was seen to be the most interesting. Derived from the results of Test One, Figure 4e shows that 71.4% of those participants who were given Audio only and 80% of those who were given Audio and Timeline felt they had learned little or nothing from the Astronomy programme. In contrast, 61.5% of those who were given Audio and all visuals and 58.3% of those who were given Audio and Diagrams felt they had learned something from the programme. In terms of Test Two (shown in Figure 4f) 42.8% of the participants who were given Audio only and 40% of those who were given Audio and Timeline felt that they had learned little or nothing from the programme. In common with the results for Test One, 61.5% of the participants who were given Audio and all visual and 75% of those who were given Audio and Diagrams felt that they had learned something from the programme. The participants who were given Audio and Diagrams achieved better scores. In contrast, the participants who were given Audio only felt they had learned more by the end of the experiment. |
|
![]() |
6. Discussion The detailed findings from the study have shown that:
The study has shown that great care needs to be taken in selecting appropriate media used in DAB educational programmes. Time needs to be allowed for visual materials to be broadcast before the audio so that information regarding the entire programme is delivered correctly. In the case of using video, often the same key messages can be communicated using a more appropriate combination of media. An important research area is an examination of the potential for broadcasting different versions of the DAB educational programme at the same time. The receiving device will then select the most appropriate media for display. For example, people with conventional DAB radios will only hear the audio information. People with DAB receivers connected to their computer will view an entire animated presentation. Alternatively, selected parts of the presentation might be displayed in the form of a slide show to people who have DAB devices with a small liquid crystal display. This provides a range of accessible alternatives in real-time. With regards to students, e-learning approaches often fail to recognize the advantages of learning together in groups. Using DAB to deliver distance educational programmes does not limit the size or the geographical area of a group. The DAB educational programmes can also be simultaneously stored by students and used later with other students for reference, discussion, revision and support. This study shows that incorporating visual materials within radio programmes can enhance educational effectiveness. DAB allows educational materials to be broadcast to an entire population at the same time without incurring the overload problems of the Internet and the costs incurred in producing TV programmes. By choosing and integrating the most appropriate media, we improve learning results. This is particularly important to educators who are restricted by the amount of bandwidth available. Based upon our findings, DAB can deliver educational materials to large numbers of students, simultaneously, over a large geographical area. Its true potential is only likely to be fully exploited once personal hand-held devices integrating mobile and DAB communications are widely available. In regard to people with disabilities, currently many visual impaired people receive education and entertainment through radio. While DAB has the potential to help people with some types of disability, it can inhibit learning for the visually impaired, especially when information, such as the time, is delivered visually, rather than in auditory. This can have important implications for those visually impaired people who listen to DAB radio. |
![]() |
![]() |
7. Conclusions Using visual material in radio can significantly improve learning performance, but we have been unable to ascertain precisely the optimum level of bandwidth needed to ensure that the audio information is effectively communicated. Plans for future research will address this issue. |
![]() |
![]() |
8. References Alty, J.L. (2002). Dual Coding Theory and Education: Some Media Experiments to Examine the Effects of Different Media on Learning, In the proceedings of ED-MEDIA 2002: World conference on educational multimedia, hypermedia & telecommunications, June 24-29, 2002, Denver, Colorado, USA. 42-47. Beacham, N.A. and Alty, J.L. (2003). The MEDIA Project: , In the proceedings of ED-MEDIA 2003: World conference on educational multimedia, hypermedia & telecommunications, June 23-28, 2003, Honolulu, Hawaii, USA. 2689-2695, (Received outstanding paper award). ETS 300 401 (1992),
Radio Broadcast Systems; Digital Audio Broadcasting (DAB) to mobile
portable and fixed receivers. Duncumb, I.P., Gadd, P.F., Wu, G. and Alty, J.L. (2003). Visual Radio: Should we paint pictures with words or pictures? In the proceedings of the IBC 2003 Conference, International Broadcasting Convention, 11-15 September 2003, Rai Convention Centre, Amsterdam. Mayer, R.E. (2001). Multimedia Learning, Cambridge University Press, ISBN 0521-78239-2. Najjar, L.J. (1996). Multimedia information and learning, Journal of Educational Multimedia and Hypermedia, 5(1), 129-150. Paivio, A. (1986). Mental Representations. New York: Oxford University Press. Paivio, A. (1971). Imagery and verbal processes, New York: Holt, Rinehart & Winston. Sweller, J., van Merrienboer, J. J.G. and Paas, F.G.W.C. (1998). Cognitive Architecture and Instructional Design, Educational Psychology Review, 10(3), 251-296. |
![]() |
![]() |
|
![]() |